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3D object detection and isolation can be achieved algorithmically using computational integral-imaging data. The
3D scene is acquired by a multi-channel system, where each channel (elemental image) captures the scene from a
shifted perspective angle. The number of these channels affects the weight, the cost, and the computational load of
the segmentation process, while a lower number of channels may reduce the performance of the objects’ separation
in the 3D scene. This research examines the effect of the elemental images’ quantity on the 3D object detection and
segmentation, under both regular and noisy conditions. Moreover, based on our previous works, we perform an
improvement of the 3D object segmentation quality using an adapted active-contour method. © 2017 Optical

Society of America

OCIS codes: (100.6890) Three-dimensional image processing; (200.4560) Optical data processing; (100.3008) Image recognition,

algorithms and filters.
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1. INTRODUCTION

3D object segmentation can be useful and effective in various
fields of computer vision, such as robot navigation, medicine,
and surveillance. A more specific application is described in
Ref. [1]. In this case, a clearer scene presentation in a prosthetic
vision device is achieved with 3D object segmentation.

Integral imaging [2], which was first proposed by Lippmann
[3], has drawn vast attention and developments recently due to
the availability of high-performance capturing and displaying
systems. 3D images can be visualized by recording and process-
ing 2D multi-view images, which are different angular perspec-
tives of the 3D scene under incoherent illumination conditions;
each image is referred to as an elemental image (EI). A com-
putational process reconstructs confocal images of different
depth planes of the scene, as described in the next section.
While, as the number of EIs (channels) is higher, the 3D in-
formation is richer, the quantity of the EIs also defines the
weight of the system, its cost, and its computational load.
A previous work [4] performed a comparison between the
integral-imaging system and the traditional stereo vision
method, which uses only two channels. This comparison
defines the synthetic aperture, the distance between the two
farthest EIs, and the total number of pixels in all the acquired
data to be equal in both methods. According to this work, the
integral-imaging system has much better results in the case of

3D computational reconstruction of planes with occluded
objects. However, this work used only one integral-imaging
configuration, and did not suggest the optimal amount of EIs.
Here, we test the effect of the EIs’ quantity in the case of 3D
image segmentation, under both regular and noisy conditions.
Our previous works [5,6] developed a method that finds the
depth locations of 3D objects directly from the gradient proper-
ties of the computationally reconstructed depth planes without
an additional procedure of comparison with the recorded im-
ages, in contrast to previous works [7–11]. Then, the method
segments the detected objects and produces isolated edge-type
regions of them. As will be shown in the next section, the gra-
dient value in the reconstructed depth planes depends on the
blur severity, and, when we have more perspective angles of the
scene, the blur is denser and smoother. On other hand, more
channels yield a more expensive and heavy optical system. This
method is robust in noisy imaging conditions because it uses
only the summation-based reconstructed images. However, the
effect of this summation depends on the number of summed
perspectives. As detailed in the next section, this method
provides 3D segmentation based on the assumption that the
focused regions consist of the highest frequencies along the
depth plane.

This paper examines the influence of the amount of EIs on
the ability to detect and segment objects in the 3D scene using
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this algorithm. The experiment evaluates the use of various
numbers of EIs toward the lowest number of two (as in stereo
imaging). In addition to this examination, we present an im-
provement of the accuracy of the 3D object segmentation using
an active-contour method [12], with which a closed contour of
the isolated objects is achieved.

The rest of the paper is organized as follows: Section 2
presents an overview of the 3D segmentation algorithm from
Refs. [5,6]. In Subsection 2.A, we propose to use accurate re-
gions at which false edges may appear in reconstructed planes,
in addition to the correct edges at the most focused plane.
Section 3 examines the effect of the quantity of the EIs on
the object detection and segmentation quality. This effect was
examined under both regular and very noisy conditions
(Subsections 3.A and 3.B, respectively). Moreover, we examined
the influence of the EIs’ quantity on the computational load, and
the effect of the EI resolution on the object localization quality,
in Subsections 3.C and 3.D, respectively. In Section 4, we
present another improvement to the final segmentation using
the active-contour method with adaptation to our algorithm.
Finally, conclusions and a summary are given in Section 5.

2. OVERVIEW OF THE 3D OBJECT
SEGMENTATION

The 3D object detection and segmentation algorithm is as
follows:

First, computational integral imaging [13] is performed us-
ing the matrix of the recorded EIs. The whole depth range
available for reconstruction of depth planes is defined according
to the depth of field (DOF) of a single EI, and the resolution
of the reconstructed image is limited by the pixel size [13]. The
reconstructed image of the integral-imaging system at zj
depth is [13]
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where gkl is the K × L EI array, k, l are indices for the particular
EI,Mj is the magnification factor that depends on the distance
between the camera and the reconstructed plane zj, Sx , Sy are
the distances between the cameras at x and y directions, respec-
tively, and f BP�x; y; z0� is 2D reconstructed image at distance
zj from the camera. The effect of the values of K and L is
examined in this work.

According to [6], the 3D localization and isolation process
performs high-pass filtering in order to detect the focused sharp
object regions. This process is very sensitive to noise in the im-
age. Therefore, we use only the reconstructed planes for this
process, without employing the EIs (captured) that may be
noisy. These planes are formed in a noise-reducing summation
process as shown in Eq. (1). Furthermore, we apply the adap-
tive Wiener filter [14] to the reconstructed planes for smooth-
ing the remaining noise while preserving the object’s sharp
structure, as follows:

f̂ zj � mf �x; y; zj� �
σ2f �x; y; zj�

σ2f �x; y; zj� � σ
zj2
v

× �f BP�x; y; zj� − mf �x; y; zj��; (2)

where f̂ zj is a de-noised reconstructed image, in the distance zj,
mf �x; y; zj� is the local mean value in a [3 × 3] sliding window,

σ2f �x; y; zj� is local variance there, and σ
zj2
v is the variance of

white Gaussian noise with zero mean, assumed in the image.
The noise power is estimated from regions where the standard
deviation (STD) of the original image is very small (non-
significant activity in the original image). Areas with high activity
are detected by thresholding the image gradient magnitude.
The noise power is estimated by dividing the image into over-
lapping square regions contained in the areas where the abso-
lute gradient is below a threshold. According to Ref. [15], a
threshold value of 4 (out of 256 levels) and a square region size
of 10 pixels perform well with regular images. Each square

region size yields a local noise variance, σ
zj2
v , and the noise vari-

ance in the image is estimated as

σ
zj2
v � 1

W

XW
w�1

�σzj2vw �; (3)

where w is the index of the local noise variance in such a single
square region, and W is the total number of square regions.

For the purpose of producing accurate 3D object segmen-
tation, we propose several stages. In the first stage, we find 3D
depth locations of objects in the 3D space by looking for the
local higher gradient values of the reconstructed image along
the depth axis [6]. The average gradient magnitude of the
reconstructed plane (AGMR) is then calculated [6]:

AGMR�zj� �
1

Nx · Ny

X
y

X
x

j∇�f̂ zj �j: (4)

The results of Eq. (4) yield a “depth graph.” Each local maxi-
mum in a curve in this graph has shown convergence to a sig-
nificant object location along the z axis, at the imaging capture
instance. In the next phase, an object segmentation process for
each depth location is performed. This process initially applies
an adaptive threshold to the wavelet coefficients of each
reconstructed plane where an object was detected [6]. These
coefficients are high-pass filtered versions of the image in three
directions. The adaptive threshold value, rT i

, is found accord-
ing to the probability density function (PDF) of each wavelet
sub-band:

rT i
� r:f pT i

� 0.995; where f pT i
�

R rT i
r0i jPDFi�r�jdrR rf i
r0i jPDFi�r�jdr

;

(5)

where r is the sub-band gray level’s index that is limited by r0i
and rf i

. The PDF is determined as the normalized histogram of
sub-band i. In addition to the initial object isolation, the
method in [6] removes false edges according to the highest gra-
dient value of edges detected at more than a single depth plane.
In order to eliminate such false edges, we search for the highest
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gradient value among the different reconstructed edge-detected
images that contain edges of the same object.

A. Removing False Edges in Multiple Reconstructed
Planes
Because of the different blur levels along the depth, the object’s
edge can be found in different locations in different recon-
structed images. The point spread function (PSF) region from
the focused area to the blurred area depends on the depth dis-
tance between them:

KERblr �
�����Sx�K − 1�

Mj
−
Sx�K − 1�
Mj�1

���� ×
����Sy�L − 1�Mj

−
Sy�L − 1�
Mj�1

����
�
;

(6)

where Mj and Mj�1 are the magnification factors according to
depth planes zj and zj�1, respectively. This PSF region gives the
area in which a detected edge may shift from one depth plane to
the other. The following procedure eliminates the false edges.
This approach is an improvement to [6]. In this case we used
the depth-adaptive PSF region as calculated in Eq. (6):

Phase 1: find�xt ; yt� → for f∩�Fp � KERblr; F p�1�g;

Phase 2: Tp �
� X

i�1→3

jrT i
�xt ; yt�j

�
;

Phase 3: Fp�xt ; yt� � 1 if max
p
�Tp�; else Fp�xt ; yt� � 0; (7)

where xt , yt are the coordinates that include common edges
along the depth axis at planes associated with all the local peaks
p is the peak index.

3. CHANNEL QUANTITY’S EFFECT

This section presents the effect of the amount of multi-perspective
recording channels (the EIs) on the 3D segmentation. The
synthetic aperture in all the cases is equal, in order to preserve
the depth resolution. The effect of the channels’ amount [the
values of K and L in Eq. (1)] is tested at both regular and noisy
conditions. For both cases we checked the results of the depth
graph and the final segmentation. In order to examine the ro-
bustness of the algorithm, we present two very different scenes.
The first one, as presented in Fig. 1(a), includes two toy cars
with uniform background, where the first toy is located 54 [cm]
from the camera, and the second stands at 62 [cm] from it.
The second scene, as presented in Fig. 1(b), includes two cups
that are located 60 [cm] from the camera, in the front plane,
and a very rich background that includes various objects
near the wall. In both cases, the effective focal length was
20 [mm], and the synthetic aperture size was 30 mm × 30 mm.

The examined amounts of EIs were: 5 × 5, 4 × 4, 3 × 3, 2 × 2,
and 1 × 2. Note that a higher number of EIs produces results
that are quite similar to the 5 × 5 case. In Subsection 3.A, we
examine the channel quantity’s effect under regular illumina-
tion conditions, and in Subsection 3.B the results are examined
for images with simulated severe noise conditions.

A. Operations under Regular Conditions
As mentioned above, in this section we perform 3D segmen-
tation according to Section 2. The 3D scenes are shown in
Figs. 1(a) and 1(b).

In the first phase, the depth graphs according to Eq. (4) are
yielded. Figures 2(a) and 2(b) show plots of the depth graphs for
the locations of the 3D objects, for different numbers of EIs,
where Fig. 2(a) is obtained from the scene of Fig. 1(a) and
Fig. 2(b) is from the scene of Fig. 1(b). We define the STD
of the depth graph as a measure of the robustness of the depth
localization procedure, because it gives higher values as the peaks
of the graph (object locations) are more prominent from their
surroundings. Figure 3 shows the resulting STD values for both
depth graphs in Fig. 2. Each STD graph in this figure is normal-
ized to a maximum value of 1. It can be seen that as the amount
of EIs is larger, the STD is increased; thus the algorithm is more
robust and less sensitive to noises. It can be seen that the STDs
have sharp drops from the case of 3 × 3 EIs toward lower

Fig. 1. Elemental images of two different examined scenes.
Fig. 2. Depth graphs for different numbers of elemental images.
(a) for the scene in Fig. 1(a), and (b) for the scene in Fig. 1(b).
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numbers of EIs, while for higher numbers of EIs until 5 × 5 the
values do not changemuch. Therefore, according to both scenes,
the best configuration is 3 × 3 EIs. In this case, the algorithm is
relatively robust and less sensitive to noises, while the amount of
channels is relatively low. It can be seen that both cases yielded a
similar tendency. The depth of the objects was detected in all the
cases at the same locations. However, as the amount of EIs is
higher, the distinction between the focused and the defocused
regions is somewhat clearer.

Figure 4 presents the number of detected depth planes
where objects exist as a function of the EIs’ quantity for both
scenes shown in Fig. 1. The number of such detected depth
planes is according to the number of peaks in each depth graph
in Fig. 2. It can be seen that in all the cases aside from the 2 × 1
case, two depth planes are detected (in the same depth loca-
tions). In the case of just two EIs, wrong depth planes are de-
tected in addition to the correct ones. This can be explained
according to the only one direction of 3D orientation instead
of two in the other cases. Next, we present the segmentation
edge results according to Eqs. (5)–(7). In Figs. 5 and 6 the
segmentation results using different numbers of EIs are repre-
sented for the first and second scenes, respectively. From Fig. 5
it can be seen that the segmentations in the cases of 5 × 5 to
2 × 2 are very similar, but in the bottom case of 1 × 2 EIs, the
segmentation includes false edges. Note that in this case, which

is a kind of stereo imaging, the 3D data are obtained only in the
horizontal direction and false edges may be more likely to ap-
pear in the other direction. The results in Fig. 6 are quite sim-
ilar, although some decrease in segmentation quality can also be
seen in the 2 × 2 case.

Fig. 3. STD values of the depth graphs as functions of the EIs’
quantity. Each STD graph is normalized to a maximum value of 1.
It can be seen that when the amount of EIs is higher, the STD is
higher; thus the object depth detection is more robust.

Fig. 4. Quantity of detected sharpest depth planes (depth locations
of objects) as a function of the EIs’ quantity according to the results
from the depth graphs in Fig. 2.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 5. Edge-based segmentations of the reconstructed images that
include focused regions (the peaks in the graphs of Fig. 2) for different
amounts of EIs used, for the scene shown in Fig. 1(a). (a) 5 × 5 at
540 [mm], (b) 5 × 5 at 620 [mm], (c) 4 × 4 at 540 [mm], (d) 4 × 4
at 620 [mm], (e) 3 × 3 at 540 [mm], (f ) 3 × 3 at 620 [mm], (g) 2 × 2 at
540 [mm], (h) 2 × 2 at 620 [mm], (i) 1 × 2 at 540 [mm], and (j) 1 × 2
at 620 [mm].
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B. 3D Segmentation under Noisy Conditions
In this section, we perform the same experiment as in the pre-
vious section, but under noisy conditions. The signal-to-noise
ratio (SNR) of a single EI is calculated as

SNREI � σ2s ∕σ2n; (8)

where σ2s is the variance of the signal and σ2n is the variance
of noise, which approximates the mean square error (MSE)

between the normalized EI and its noisy version (NEI) at each
case, assuming additive noise [16]:

MSE � 1

N ·M

X
jEI −NEIj2; (9)

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 6. Same as Fig. 5, but for the scene shown in Fig. 1(b). (a) 5 × 5
at 600 [mm], (b) 5 × 5 at 2000 [mm], (c) 4 × 4 at 600 [mm], (d) 4 × 4
at 2000 [mm], (e) 3 × 3 at 600 [mm], (f ) 3 × 3 at 2000 [mm], (g) 2 × 2
at 600 [mm], (h) 2 × 2 at 2000 [mm], (i) 1 × 2 at 600 [mm], and
(j) 1 × 2 at 2000 [mm].

Fig. 7. Simulated noisy elemental images of the scenes in Fig. 1.

Fig. 8. Depth graphs as functions of the elemental images’ quantity.
(a) for the scene in Fig. 7(a), and (b) for the scene in Fig. 7(b).
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where N and M are the numbers of pixels along the x and y
directions.

As shown in Section 2, the 3D segmentation process is ap-
plied to the reconstructed image. In order to evaluate the SNR
of the reconstructed image as a function of the EIs’ quantity, we
approximate the SNR in a reconstructed image, SNRzj , which
is a sum of K × L noisy EIs by

SNRzj �
X
K

X
L

SNR � K Lσ2s ∕σ2n � K L · SNREI: (10)

This approximation is quite accurate only in the focused re-
gions at which similar locations of the K × L deterministic EIs
components are summed with the uncorrelated additive noise.

Figures 7(a) and 7(b) present the simulated noisy elemental
images shown in Figs. 1(a) and 1(b), respectively. In those cases,
the SNR values of the EIs are 0.32 and 0.33, accordingly.

Next, the depth graphs according to Eq. (4) are presented in
Figs. 8(a) and 8(b) for the noisy scenes in Figs. 7(a) and 7(b),
respectively. In both cases, the algorithm detects the 3D object
locations; however, as the number of EIs is decreased, more
false alarms appear in the depth graphs, as will be quantified
later. Moreover, as the number of EIs is higher, the detection
of object depths is clearer. This is also evident from Fig. 9,
where similarly to the non-noisy case, the depth detection

robustness (quantified by the STD) is increased when the
amount of EIs is increased.

Figure 10 presents the number of detected depth planes
where objects exist as a function of the EIs’ quantity for both
noisy scenes shown in Fig. 7, according to the number of
peaks in each depth graph. In this noisy case, for the image
in Fig. 7(b), results are accurate (two detected planes) from

Fig. 9. Same as Fig. 3, but for the case of severely noisy images.

Fig. 10. Quantity of detected sharpest depth planes (depth loca-
tions of objects) as a function of the EIs’ quantity according to the
results from the depth graphs in Fig. 8.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 11. Edge-based segmentations of the reconstructed images that
include focused regions (according to the graphs of Fig. 8) for different
amounts of EIs used, for the scene shown in Fig. 7(a). (a) 5 × 5 at
540 [mm], (b) 5 × 5 at 620 [mm], (c) 4 × 4 at 540 [mm], (d) 4 × 4
at 620 [mm], (e) 3 × 3 at 540 [mm], (f ) 3 × 3 at 620 [mm], (g) 2 × 2 at
540 [mm], (h) 2 × 2 at 620 [mm], (i) 1 × 2 at 540 [mm], and (j) 1 × 2
at 620 [mm].
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3 × 3 EIs and higher, while for the image in Fig. 7(a) false
alarms always exist, but decrease as the number of EIs increases,
resulting from the increase of the SNR in the reconstructed
image. In the next phase, the 3D edge-based segmentation
according to Eqs. (5)–(7) is presented. Figure 11 presents
the results for the case of Fig. 7(a), and Fig. 12 shows the results
for Fig. 7(b). In both cases, it can be seen that the quality of the
segmentation is clearly lower when the amounts of the EIs are
2 × 2 and 1 × 2. In these cases, the segmentation is less clear

and includes false edges. This fits the decreased SNR in the
reconstructed planes as the number of EIs is decreased, accord-
ing to Eq. (10).

C. Effect on the Computational Load
The effect of the EIs’ quantity on the computational load de-
pends on the amount of operations in the reconstructed image
creation as presented in Eq. (1). This procedure is applied dur-
ing the depth localization formation, according to Eq. (4). The
other stages of the proposed algorithm do not depend on the
EI’s quantity, because they are applied to the reconstructed im-
ages. In Fig. 13 we present the changes of the computational
load of the entire algorithm (in percentages) as a function of the
EIs’ quantity, where 100% is defined as the computational load
without the part of the formation of the reconstructed images.
It can be seen that the computational load increases approxi-
mately linearly as a function of the EIs’ quantity, as expected
from Eq. (1).

D. EI’s Resolution Effect
In this section, we evaluate the effect of the EI’s spatial reso-
lution (number of pixels) on the segmentation operation as
a function of the EIs’ quantity. In Ref. [1] we have dealt with
the segmentation quality as a function of the confocal image
resolution, for low image resolutions.

There, the segmentation quality has been measured through
object recognition by observers. It was found that the visual
recognition rate is rapidly increased with increasing resolution
and saturates at about 10,000 pixels per object region. In this
paper, we examine the effect of the EI’s resolution on the depth
localization operation as presented in Eq. (4). Figure 14 shows
the depth graphs for various EI resolutions.

In Figs. 14(a) and 14(b) we test the cases of 500 × 500,
250 × 250, 200 × 200, 150 × 150, and 100 × 100 pixels in the
EI. In Figs. 14(c) and 14(d) the tested cases are: 400 × 600,
200 × 300, 160 × 240, 120 × 180, and 80 × 120 pixels in
the EI. Moreover, the effect of the EIs’ quantity in this case
was also examined, by applying the algorithm using both
5 × 5 EIs [in Figs. 14(b) and 14(d)] and 3 × 3 EIs [in
Figs. 14(a) and 14(c)].

It can be seen from Fig. 14 that the effect of the EIs’ quantity
is not strong. This supports the preferred use of the 3 × 3 EIs as
concluded previously. Regarding the effect of the EI resolution,
It can be seen in all cases that in the lower resolution EIs (upper

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 12. Same as Fig. 11, but for the scene shown in Fig. 7(b).
(a) 5 × 5 at 600 [mm], (b) 5 × 5 at 2000 [mm], (c) 4 × 4 at 600 [mm],
(d) 4 × 4 at 2000 [mm], (e) 3 × 3 at 600 [mm], (f ) 3 × 3 at
2000 [mm], (g) 2 × 2 at 600 [mm], (h) 2 × 2 at 2000 [mm], (i) 1 × 2
at 600 [mm], and (j) 1 × 2 at 2000 [mm].

Fig. 13. Changes (in percentages) of the computational load as a
function of the EIs’ quantity, with regard to 100%, defined as the com-
putational load without the reconstructed images formation part.

2138 Vol. 56, No. 8 / March 10 2017 / Applied Optics Research Article



curves in the depth graphs) the depth planes are poorly detected
comparing to the ones with higher resolution (peaks have been
missed).

4. SEGMENTATION IMPROVEMENT USING
ADAPTED ACTIVE CONTOUR

In order to achieve a more accurate region of the detected
objects, we applied the active-contour algorithm [12]. The geo-
desic active-contour (GAC) model is a variational model that
consists of finding the contour C that minimizes the following
energy functional [12]:

EGAC�C� �
Z

L�C�

0

gb�j∇f̂
zj
bb�C�s��j�ds; (11)

where f̂
zj
bb is the bounding-box’s region in f̂ zj at distance zj, d s

is the Euclidean element of length, L�C� is the length of the
curve C , and the function gb is an edge indicator function that
vanishes at object boundaries such that [12]

gb�j∇f̂
zj
bbj� �

1

1� βj∇f̂ zj
bbj2

; (12)

where β is an arbitrary positive constant. Hence, the energy
functional, EGAC, is actually a new length obtained by weight-
ing the Euclidean element of length d s by the function gb,
which contains information concerning the image gradient
characteristic [12]. The result from this algorithm is a binary
filled region. This algorithm is an iterative procedure that
requires a stop condition that we define as

max�f d∩f t
AC �; (13)

where f d is the binary edge resulting from the object detection
and isolation process as presented in Eqs. (5)–(7), f t

AC is the
contour according to the active-contour algorithm [12] shown
in Eqs. (11) and (12), and t is the iteration index.

The result of Eq. (13) is a binary image (“mask”) in the re-
gion of the detected object (can be termed “mask”). Figure 15
shows the regions in the EIs of Fig. 1 covered by the masks
found using the adapted active-contour process applied to
the segmented images obtained according to Section 2. It can
be seen that in both cases the results can be considered as
richer relative to the results in Figs. 5 and 6, as they produce

Fig. 14. Effect of the EI resolution and number of EIs on the depth
graph as formed by Eq. (4). (a) and (b) are related to the scene from
Fig. 1(a) with 3 × 3 and 5 × 5 EIs, respectively. (c) and (d) are the same,
for the scene in Fig. 1(b).

Fig. 15. Improved segmentation results using active-contour
method, in addition to the basic binary-edge-based segmentation
algorithm.
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visual images of the detected objects, instead of a binary
segmentation.

5. CONCLUSIONS AND SUMMARY

This paper examines the effect of the number of EIs on a 3D
object detection and segmentation method, which employs re-
constructed (confocal) images obtained by computational inte-
gral imaging. In addition, it proposes some improvements of
the segmentation process. The following flow chart (Fig. 16)
summarizes the segmentation algorithm chronologically.

We found that the segmentation can be achieved with only
2 × 2 EIs for regular images. Moreover, we showed that when
using just two EIs, where the 3D data are obtained only in one
direction (horizontally in this case, as in stereo imaging), the
segmentation quality is decreased. From the depth graphs
(Figs. 2 and 8) and their analyses we can see the effect of the
EIs’ quantity on the algorithm’s object depth detection robust-
ness. It is clear that in general, as the quantity is increased, the
robustness is increased. However, considering both the quality
of results and the system’s cost and weight (increased by the
number of EIs), it can be concluded from the results that
for the regular case (no significant noise in the images) a num-
ber of 3 × 3 EIs is a good choice. In the case of severe noisy
conditions, we have seen that a higher number of EIs should
be used, depending on the amount of SNR in the images, be-
cause the quantity of EIs is needed not just for the separation
between blurred and sharp regions, but also for the reduction of
noise in the summation process in Eq. (1).

In addition, we found that using an active-contour method
adapted to our case for an improvement of the final segmen-
tation, richer results of the segmented regions can be obtained

(with regard to the edge-segmentation done before). This can
be very useful for object recognition.
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